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Pore network as a model of porous media: Comparison between nonhierarchical and
hierarchical organizations of pores
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A pore network is used as a model of a porous medium with hierarchical and single level organization of the
pores. A microscopic diffusion or adsorption process is introduced that permits the study of both temporal
evolution and effective properties of transport. The relationships between the model parameters and the mea-
surable quantities are derived. The transport in media with a hierarchical organization of pores is shown to be
qualitatively different from that in media lacking this organization. The question of experimental distinction
between the two types of pore organization is also studied. We show that mercury intrusion poradititry
measurements furnish valuable information about the pore organization in a sample, but that the exact decon-
volution of the real pore size distribution from the experimental data is not straightforward. Our work provides
indications for a correct interpretation of MIP results. Qualitative comparison with experiments show the
pertinence of hierarchical models.

PACS numbd(s): 81.05.Rm

I. INTRODUCTION chical structure that contain several families of pores of dif-
ferent length scale@macroporosity, microporosity such as
A lot of effort has been devoted to the study of transportmortar, fractured media, or several types of r¢gk In hi-

properties of porous materials, motivated by a large numbegrarchical structures two points in a sample can be connected
of applications reaching from oil recovery and ground watey two different paths formed exclusively by micropores or
contamination to diffusion in biological membranes. Along by macropores, each of which has an influence on the trans-
with the experimental work, modeling is an important tool, POrt properties. A first approach to this problem was consid-
which allows generalization of the experimental results ang®d in[9,10]: a network model was proposed, where neigh-
also gives a better insight into the transport process itsen*?or sites are connected by several transport paths of different

because its important features can be independently studieﬁ‘?nducnv't'es' eac_h pat_h corresponding to a given family of
This enhances the interpretation of experimental data pores(.j Poreﬁ formllr)lg different paths are not actrl]JaIIy repreb—l
- " ..sented. Exchange between various transport paths is possible
Models based on a simplified structure of porous mecjlaonIy at the sites of the network; therefore all the transport

?hre useful from dt.h|s point ofk\{|ew. ]:rheholdest, dretpre?entmtg aths havea priori the same length. Hence this approach is
€ porous media as a packing of spheres, dates rom Mg, ¢ tficient for the case where more than two families of

19th century. Nevertheless, these models are difficult 10,05 narticipate in the transport. In more realistic models
handle both analytically and numerically, and they have,qres forming different transport paths are explicitly repre-
gained renewed attention recently as “continuum percolationyanted. A hierarchical structure is typically obtained by in-
models” [1,2]. troducing the correlations between the pore length and the
An important simplification has come with the network pore diameter. They are generated by fractional Brownian
models introduced by Faft3], which have become very motion[11,17, or by a fractal-type construction of a model
popular[4,5]. In these, the pores are represented as tubes ¢i3-16. This second possibility, directly motivated by the
a given diameter which are placed on a regular networkobservation that the porous medium is scale invariant in cer-
generally in a rectangular or cubic grid. This approach can beain length range$17], has the advantage that as well as a
viewed as a generalization of percolation modés The  numerical description an analytical approach is possible.
drawback of the simple network models is that they representhese models are often used for modeling transport on a
only single pore-level structures, since all the pores have thgeological scale, so a large number of pore families is rep-
same length. In this case one family of pores determines theesented. Nevertheless, for most examples of porous materi-
transport properties, which makes this model suitable foals on a laboratory scale, just two or three pore families are
only the limited number of materials that fulfill this one-level sufficient[18,19.
requirement. It has been applied with success to permeability Even though much work has been done on pore network
of sandstone, for example, where the pertinent pore diamet@nodels, a comprehensive comparison of transport in porous
is determined from the section of throats between the grainmedia with the “single level” and “multiscale” pore struc-
[7]. ture is still lacking. A shortcoming of current transport stud-
This approach is inadequate for materials with a hieraries, moreover, is that adsorption is not explicitly considered.
We argue that this approach does not lead to the correct
description of the temporal evolution of transport processes,
*Email address: vor@nri.cz because diffusion and adsorption coefficients have different
"Email address: mad@spec.saclay.cea.fr dependencies on the pore diameter. From this logic we de-
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FIG. 1. Single level network. Sites®() and pores(horizontal FIG. 2. Construction of the hierarchical pore network HPN with

line) of non-null diameter. A pore has the form of a cylinder of |j:2 Ieve!s (I)f Ihierlarchy Wlith .t:ehscallgg.factdg:g, F|31|:p2|
lengtha and diameted. =0.4.(a) Single level network with the grid sizg,, (b) single leve

network with the grid sizea,=2a,, and(c) the hierarchical net-
velop a description of microscopic diffusion process with Work after the superposition @8 and (b).
adsorption in a pore network model. We find the relation ) ) » o .

D P whereh(d) is a strictly positive distribution and(d) is the

with the macroscopic diffusion equation in porous media,”. A )
which allows us to connect the transition rates of the micro2irac distribution. Consequently, a fraction{) of pores

scopic processes with the macroscopic quantities diffu- has a null diametefthey are absejtso that a fraction (1

sion and adsorption coefficientdhe “Einstein relation” is p) of pairs of nearest neighbor sites is not connec?tgd. The
derived that connects temporal evolution with the effectivediameter of a pore connectzlng siteg is denotedd;; ; its
transport properties. section is denote&; = w(d;;) /4.

The model is described in Sec. Il. We then demonstrate L€t the network described above represent the first level
two applications, which show the relevance of hierarchicalPf @ hierarchical pore structure. It is fully determined by the
networks to modeling transport in porous media. In Sec. lIlParameters.,a, ,p; and by the distributiom, (d). A hierar-
the model is used as a mercury intrusion porosiméipP) c_hlcal ne_twork with two Ie\_/el_s is created b_y the superposi-
simulator. The MIP is widely used for measuring pore sizet!on of this ngtwork on a similar network with the grid size
distribution. As the results depend strongly on the connectiv@2, Wherea, is a multiple ofa,(a,=ba,), and with a pore
ity of the pore space, their interpretation is not straightfor-Size distributionf,(d) =(1—p) &(d) + poh,(d). This pro-
ward. Very sophisticated simulators have been developed fdi€ss i illustrated in Fig. 2. By definition, pores on the first
single level porous media for deconvoluting the real pord€Vvel that were covered during the superposition by the pores
size distribution from the MIP measurd20,5. To our ©Of the second level disappear. The procedure described
knowledge, no such work has been performed in the frame2boVe is iterated to obtain a network withlevels. _
work of a multiscale model, apart from recent rate-controlled _The basic length scale of the hierarchical network is the
MIP simulations on correlated percolation networks, whichdrid size of the network on the first level. This is also the
showed the existence of correlated heterogeneities in sedgngth scale on which transport processes are defined. We
mentary rockg12]. We here focus on traditional pressure- thus decompose each pore on the level 2 msegmentsf
controlled MIP. The image of the pore structure is qualita-l€ngtha;. Now two nearest neighbor sites in the network are
tively different for single scale and multiscale pore cOnnected by a segment. _
organization. A qualitative comparison of the simulation re- 10 each segment connecting nearest neighbor sjfes
sults with MIP experiments on cement pastes is given, whicihere corresponds a volume,)®/3 of the network. This
permits a correct interpretation of experimental data. In Secghables us to define thmorosity ¢;; of the segmenti() as
IV we compare the transport properties of single level and

multiscale models. We focus on the role played by fractures 3Sja;
(macropores which have an important influence on the ij= 3"
transport dynamic$21,22. We show that their role is dif- (a1)

ferent in single level and multiscale structures. Moreover, it . . .

is seen that the reversible adsorption process, although K€ Porosity at sité is defined as the average value &f
slows down the dynamics of the diffusion, undermines thePVer the incoming segments at this site,

effect of retention in fractures. We also give the scaling of a

correlation length of a fractured sample as a function of the 2
L >, Sijas

conductivity of macropores. 1
" 2(ap®

II. DESCRIPTION OF THE MODEL

Imagine a regular cubic network df® sites. A two- We sum over the six nearest neighbor sites. The total volume
dimensional section of such a network is represented in Figf pores in the sample comes from two contributions: from
1. Leta be the distance between two nearest neighbor sitegccessible poregthe pores forming the percolation cluster
(grid size. The nearest neighbor sites are connected by &6]) and from isolated pores. As only accessible pores influ-
cylinder-shaped pore of diametdy which is randomly as- ence transport properties of the network, isolated pores are
signed from a distributiori(d): not considered for the definition of the total porosity. It is

evaluated asP =3, ¢i(a;)%/V,, whereQ is the set of ac-
f(d)=(1—p)do(d)+ph(d), O=p=1, (1)  cessible sites andj is the total volume of the sample.
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Ill. MIP SIMULATIONS FOR ONE-LEVEL AND 9
HIERARCHICAL STRUCTURES

T T

MIP is based on the fact that the pressure we have ta 6
apply to squeeze a nonwetting fluid in a pore is inversely
proportional to the diameter of this pore. For a cylindrical
pore of diameted the pressure is given by the relatif|

L

~

O - -

P=—4vycosO/d, 2 S 37

where v is the surface energy of the liquid ardl is the

contact angle. The pore size distribution is obtained from the

invaded volume measured as a functionPof
The algorithm of the intrusion, similar to the one used in 1 SN

invasion percolatiof23,24], reflects the experimental proce-

dure. The sample is immersed in mercury, so that the liquid

can enter from all the faces. To each pressumrresponds

from Eq. (2) a diameterd, so that only the pores witd’

=d can be invaded. If a pore is invaded under a presBure

its neighbors with d'a_‘meted,zd are also'ln.ve}ded. Large FIG. 3. Comparison of the results of simulations of mercury

n_etworks, up to _14%)Sltes, were used to minimize the finite intrusion porosimetry for the case of pore distribution on nonhier-

size effects. To interpret the results, we use the funclion  4cchical ©) and hierarchical £, two levels,b=3) networks.

“O- -

defined by W (d) is plotted as a solid line. The diameters of the two classes of
pore are given by Gaussian distributions with= 1.0, 0;=0.2 and
_ 1 dv(d) m,=3.0, 0,=0.4, respectively. Length scale in arbitrary units.
V()= T
Vo®y dind

bivariate distribution of pores is observé8] (pores are
where V(d) is the cumulative volume of accessible poresseparated by narrow negksind only one peak is present in
having diameterd’>d. Then e¥(d) gives the fraction of the MIP data[25]. In the case of intrusion in a hierarchical
porosity due to the pores with diameter in the intervalnetwork two peaks are visible, because both pore families
[d;(1+€)d]. The functionW¥ (d) reflects the real pore size independently form a percolating cluster. The same effect is
distribution in the sample. Similarly, we define an “experi- observed in the example of hardened cement pdste 7
mental” function¥;(d) as a derivative of the volum¢;(d) below) where three pore families are presewiapillary,
invaded under the pressur@é(d). The interpretation of micro-, and nanoporosity19]). The network of capillary
V;(d) is not straightforward, because a fraction of pores ofpores forms a percolating cluster even if the volumes occu-
diameterd’ >d is shaded by pores of diamet#f<d, so that pied by capillary pores and micropores are comparable,
V;(d)<=V(d). which is a sign of a hierarchical structure.

The aim of this section is twofold. First, we compare the We can now focus on the influence of connectivity on
MIP results in single level and multiscale networks. SecondMIP results. We first examine the case of a simple network
we study the influence of the connectivity on the MIP resultswhere the pore diameters follow the distributi¢h), and
in single level and multiscale networks to find the relationh(d) again is a Gaussian distribution with mearand vari-
betweenV;(d) and ¥ (d) that would allow a correct inter- anceo, truncated fod<0. The main part of the porosity is
pretation of the experimental data. due to pores of diameted,,= \/<d2>. If m>o?, dy

As we noted above, only two or three families of pores=/m?+ ¢2. The distribution¥;(d) obtained for several val-
are sufficient for a correct description of a porous sample oes ofp (Fig. 4 shows that there exists a critical diameter
the laboratory scale. That is why we consider a bivariatedc(p) that depends op. For pressures corresponding do
distribution of pore diameters, distributed once over a single>d (p), the invaded volume of pore space is very small,
level network and once over a hierarchical network. In theeven when the porosity created by pores with diameters in
first case, the distribution is given bf(d)=(1—p)g(d) this range is not negligible. In fact, for>d,, invaded pores
+pg’(d) with p=0.11; in the second case it reafifd)  do not form a sample-spanning cluster. The observed in-
=g(d), fo(d)=g’(d) on the network withh=3. The value vaded volume is thus only a finite size effect, as it corre-
of p is chosen in such a way thdt(d) is the same in both sponds to pores directly connected to the faces of the net-
cases. As the length scale is not specified, the choice of divork. With increasing network size the surface-to-volume
ameters is arbitrary. For simplicitg(d) andg’(d) are taken fraction goes to zero, so the fraction of invaded porosity
to be Gaussian distributions truncated =0, centered re- vanishes. The value df; is related to the percolation thresh-
spectively arounan=1 andm=3. The results obtained for old p. [6] of the network through25]
networks of size 6Dsites are presented in Fig. 3. In spite of
the fact that a bivariate distribution is simulated, only one J” (X)dx= Pc 3)
peak is present in the nonhierarchical case: macropores do dcg ’
not form a sample-spanning cluster, and they can be accessed
only through the microporosity. This situation can be directlyFor the cubic bond percolation netwop¢~0.249[26]. If
related to the experimental results on sandstones, whereds<d,, a sample-spanning cluster of invaded pores is
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FIG. 4. Results of the simulations of mercury porosimetry intru-

sion on a network with a Gaussian distribution of pore diameters

(m=1, ¢=0.2). Results fop=1 (O), p=0.5 (Od), andp=0.3
(A). Prediction(4) plotted for the threg values with dot-dashed,
long-dashed, and dotted bold lines, respectiviiyd) plotted with
solid bold line. Inset: Exponential convergence ®f(d) toward
®(d) for d<d.. p=1 case, linear-log plot. Network of size 40
sites was used. Length scale in arbitrary units.
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FIG. 5. Variation of¥;(d) with the connectivity of the network.
Three-level network wittb=2. Pore diameters of the three pore
classes are given by a truncated Gaussian distribution, with, respec-
tiVer, m1=1.0, 0'120.2, m2:2.0, 0'2:0.4, and m3:4.0, g3
=0.8. Length scale in arbitrary units.

The peaks corresponding to these pore families are denoted,
respectively, I, I, and Ill. The connectivity is fixed by the

triplet (p1,P2,P3)-

formed, so there is a high probability that the empty pores The comportment of the macroporosity peak can be di-
are directly connected to the invaded ones. Our numericakctly deduced from the preceding results obtained for a

results indicate thatout of a very narrow critical region
aroundd;) ®;(d) converges exponentially towas(d) (in-

nonhierarchical network. If the connectivity of the network
of macropores decreases, the position of this peak shifts to-

set of Fig. 4. This convergence is related to the statistics ofward smaller diameter&Fig. 5. The behavior of the other

the finite clusters of pores having diametée=d. Hence we
obtainV;(d) approximately in the form

d3g(d)/{d?) for d<d,

Wi(d)= (fdmx3g(x)dﬂ(d2>)5(d—dc) for d=d.
’ (4)

Equation(4) very well approximates the simulation results
for p far enough fromp.. As shown by previous analysis,
for d>d, we loseall the information about the distribution.
It is also important to note that the valuedyf corresponding
approximately to the peak oF;(d), is not equal tady, [the
peak of W(d)]. If the network of pores approaches the per-
colation thresholdd, is significantly lowerthand,, .

The results of intrusion in a hierarchical network are pre- __
sented in Figs. 5 and 6. A network with three levels is used. &
First, three levels are of sufficient generality for observation S+
of the effects of the hierarchical structure on MIP results.
Secondly, use of three levels allows a direct comparison of
the simulation results with the experimental data for hard-
ened cement pastes, where three families of pores are en

countered 19]. Simulations were done on a network of 28
sites with the scaling factds=2. The pore size distribution
on each level follows Eq.l). Let g(d) again be a truncated
Gaussian distribution, with, respectively,;=1, ¢,=0.2,
m,=2, 0,=0.4, andmz=4, 03=0.2. The parameters were
chosen to obtain three distinct families of pores, which will

peaks depends on the global connectivity of the network. In
the case of a well connected network, the position of the
peaks | and Il does not depend on the connectivity of
macropores. The maximum of each of these peaks always
indicates the characteristic diameter of the corresponding
family of pores[caseq1;1;1) and(1;1;0.5 in Fig. 5]. Peak Il

shifts only once the macropore network no longer forms a
percolating cluster. Its position is then determined by the

6.0

— (;131) I
---- (0.40.4;0.4) | |
—-—- (0.4;,0.4;0.1) i
——— (0.4;0.4;1) i

4.0

2.0

FIG. 6. Variation of¥;(d) with the connectivity of the network.

be called nanoporosity, microporosity, and macroporosityFor the details, see Fig. 5.
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0.6 (w/c). Variation of w/c mainly affects the position of the
rightmost peak; the position of the central peak is practically
unchanged. From analysis of the porosity indicated by the
rightmost peak, it is readily seen that its displacement is due
not only to a decreased average diameter of pores, as could
be concluded, but also to a decreased connecti@ity.

IV. TRANSPORT IN NONHIERARCHICAL VERSUS
HIERARCHICAL POROUS MEDIA

@,V ¥(d)

A. Diffusion-adsorption process

The diffusion process in the network is defined by the
microscopic motion of particles. A particle can be found at
‘ site i of the network with a probability?; . It can be either
0.0 ——— '1‘(‘)_2 — o 100 diffusing (probability Pf) or adsorbedprobability P?). We

have P;=P+P2. A diffusing particle at sitei can either
d [pm] ’ jump to the nearest neighbor sjtevith the probabilityW;; or

FIG. 7. Results of MIP experiments in hardened cement pasttg)e adsorbed with the probablllt)fi". An adsorbed particle is

for differentw/c ratios:w/ic=0.5 (A), w/c=0.4 (1), wic=0.3 released with probabilityy] . The diffusion process is de-

(®). scribed l;y means of a pair of balance equatiomaster
equation

relation(3), where the value op. corresponds to the perco- &Pif

lation threshold of the network formed by both micropores 7:% (W;iP]=W;;P))+P2y[ —P{»7, (5)

and macropores. In the case where only the connectivity of
the micropores decreasgsase(1;0.5;1], the peak Il does
not shift toward smaller diameters, because the network of oPy
micropores is always well connected via the network of ot Pi—»¥Pi.
macropores. This is true also for the nanopores.

In the case of a weakly connected network, the influencg, ,ree dimensions the macroscopic diffusion coefficient
of_the different families of_ pores is no longer uncorrelatedig qefined through the relatidi28]
(Fig. 6). If the connectivity decreases homogeneously
[(1;1;1)—(0.4;0.4;0.4), the positions of all the peaks ycyeull
change. The shift of peak Il is the most important, but peaks (R*(t))=6Dt, ©
| and Il are also shifted toward smaller diameters, because
the weakly connected network of macropores cannot comwhereR(t) is the distance of the particle from origin at time
pensate the weak connectivity of micropores and nanoporeb. and(- - -) means the average computed over all possible
Moreover, in this case the connectivity of macropores influrandom walks on a given network. The overbar, represents
ences the position of the microporosity peak_ If the Connecihe average calculated over all pOSSible realizations of the
tivity of the network of macropores increases, peak Il ishetwork.

shifted toward the higher diametefsase(0.4;0.4;1]; if it The transition rate§V;;, v, and ] are found by com-
decreases, this peak moves toward the lower diamgtase  parison of Eq(5) with the diffusion equation in porous me-
(0.4;0.4;0.]. dia[29],

The results presented were obtained for networks tWith
=2. The situation is different ib>2. Because of computa- () (L+ K2 aci(x, )=V -[¢p(x)D(x)Vci(x,1)]. (7)

tion limits this case is not accessible for the simulations;

nevertheless, the behavior can be deduced from the preceHere D, is the effective diffusion coefficient' is the con-
ing results. In this case pores on levelccupy large regions centration of diffusing particles in the pore, aKdd is the
that are not intersected by the pores on Igvel. Hence the adsorption/desorption coefficient, expressed in the form
percolationlike effects affect all the pore classes, and the

position of a peak in MIP results depends only on the con- a(X)

nectivity of the corresponding pore class. Kad(x)= Wkeqv (8)

In conclusion, for well connected networks only the right-

most peak in the MIP results is strongly affected by perco- . . .
lationlike effects. The positions of the other peaks indicateWh.erea(x) is the spemflc surface of the pore ahg] IS the
atio of the concentrations of adsorbed and diffusing par-

correct diameters of the corresponding pore classes. Moré! N I
over, Eq.(3) shows that the porosity indicated by the right- Ucles at equilibrium. The _prol?abnflty?i IS edxpressed by
most peak may be partially due to the unconnected pore®€ans of the concentratiors; =P;/[ ¢i(a;)"], and the
having diameted>d_. . The effects described are observableadsorption/desorption coefficierk®" is introduced, K3
in experimental results. In Fig. 7 we show the results ob-=y{/y|. If the variations of 9P{/dt are slow enough
tained on CEM-I pastes for different water-to-cement ratios(aZP}j/atZ:O), Eq. (5) simplifies to
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ac! Ny
¢i<1+K?d>ﬁ—t'=% (¢ Wjic]— iWijcf) s
f f o | A
=2, $iWi(cj—ch. e T
h=N B,
% oo Ta
The equality ¢;W;; = ¢;W;; results from the fact that the ﬁ & &\u\f A
concentration has to be constant in the stationary state. Corr § 14 T L SR o &\G\;"g::,ﬁ_
parison of Eqs(9) and(7) yields g T 0 0 T B e y
2 — ad_ cad -Q‘“ 12 ¢
(1) W =D(X) (x), KI"=K*(x). (10

The diffusion coefficient in the network can be measured 1.0 :
directly using Eq.(6), or indirectly, by calculating the con- 0.5 0.6 0.7 0.8 0.9 1.0
ductivity X of the equivalent electrical network and using an ¢/¢max
“Einstein relation” for the evaluation oD [4,30,31. The
equivalent electrical network is built by replacing the pores FIG. 8. Diffusion coefficient of a nonhierarchical netwoil,
with resistances having the conductivity; =a; ¢;W;;. Us-  (O); D with keg=0 (A), keq=0.125 (), and keq=0.5 (€).
ing a simple generalization of Derridgt al, demonstration Length scale in arbitrary units. Lines represent the EMA results.
of the equivalence between the diffusion and conductivity

problemg 32], it can be shown thdd and. are then related fi(d)=5(d—d,),
throughS =(¢;(1+K3%)D, where(- - - is the average cal-
culated over the network. In the same manner, the relation f,(d)=(1—p)(d)+ps(d—d,),

betweenD and the effective diffusion coefficienD, is
found. This last coefficient, usually experimentally acces-
sible, measures the flu@ through the sample in steady state.

It is defined through Fick's lawQ=—D Vc. The relation
betweenD andD, reads for the hierarchical network. The porosity is tuned by the

parameterg andp’. If p’=p/9, the pore size distributions
are identical in the two networks. The porositythen varies
in the intervall ¢min; dmaxl, Wheredmin=_3m(d,/2a,)? and
Gmax=37(8d%+d3)/36a3 (a, is the grid size of the net-
The relations betwee®, D, andX are of both practical work). The specific surface varies in the interval
and theoretical importance. First, it is relatively easy to[ amin;@maxl, Where amin=3wd1/af and a = 7(8d;
evaluate the the electrical conductivity of a network, since+d,)/3a2.
special algorithms for this purpose have been developed Since the length scale is not specified, this choice of the
[33,34. Second, it is simpler to discuss the transport properdiametersd, , d, is arbitrary. We choosd; =1, d,=3. The
ties of a pore network by means of the “conductivity” of valueb=3 is used, so the aspect ratio of pores is constant in
poresc;; than by means of the diffusive flux through a pore, the hierarchical network. The conductivity of a pore
which, as seen from Eq10), is a function of two indepen- should be proportional to its sectiom=d?. This corre-
dent parameterB(x) and ¢(x). sponds to the assumption that the diffusion coefficient in a
pore does not depend on its diameter. Networks of sizes up
to 60° sites were used for the calculations. In all the cases we
checked that the size of the network was larger than the
We can compare the diffusion coefficieriilsand D in correlation length, so finite size effects are not important.
hierarchical and nonhierarchical networks with two families  The simulation results for the nonhierarchical network,
of pores,(micropores and macropopedn such a network together with the effective medium approximatiéBMA)
the porosity can be varied in several ways. We chose to fixesults[35], are shown in Fig. 8. The value of the effective
the microporosity, and to vary the porosity by adding diffusion coefficientD, increases with the porosity. In con-
macropores. This corresponds to measuring the diffusion carast, the value of the diffusion coefficiebt decreases: the
efficient in several Samples of a medium that are fractured t@resence of macropores slows down the diffusion, because
different extents, or in samples of hardened cement pastefey act as reservoirs of particles. It takes a relatively long
with different water-to-cement ratios/c. The pore diam- time for the concentration to equilibrate between the
eters in the network are then given by the distribution macropore and its surroundings. It is noteworthy that this
, , , ] effect is important only in the regime of weak adsorption. As
f(d)=(1-p")o(d=dy+p’s(d=dy), p'e [0'1/9]'12 K29~Kkeq/d, the adsorption is stronger in pores with smaller
(12 diameter. If kq grows, the effect of “trapping” in
macropores is then partially compensated by the adsorption
for the nonhierarchical network, and by in micropores.

pel0;1], (13

De=(¢(1+K3%)D. (11

B. D and D, in hierarchical and nonhierarchical networks
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FIG. 10. Effective diffusion coefficient measured for CEM-I
hardened cement pastes.

FIG. 9. Diffusion coefficient of a hierarchical netwoiR, (O); .
D(bmaxt Kegtmay) With Keg=0 (A), keq=0.125 (1), and keq sampleL>¢ are the measured transport coefficients scale

=0.5 (O). D, of the nonhierarchical network plotted for compari- independent so that their values can be extrapolated. In a
son (@). p. indicates the percolation threshold of the network of N€twork with a bivariate distribution of pore sizes, there are
macropores. Length scale in arbitrary units. Lines represent th&VO points wheref becomes important. The first point is the
EMA results. percolation threshold of the network. The behaviok af its
vicinity is well understood from percolation theof§]. The

Because of the correlations in the pore size distributionS€cond point of interest is the percolation threshold of the
we cannot directly apply the EMA on the hierarchical net-macroporosity. Here the network of macropores becomes
work. Nevertheless, it is possible to use the “decimation” fractal, and its correlation length diverges. Nevertheless, the
method described ifi15], where a cell of sizéba, is re- Presence of micropores assures the finitenesg of the
placed by an effective bond with a rescaled conductivity. [fcomplete network, and the evolution §laries as a function
we denote by, and oy, , respectively, the conductivity of of the conductivity of macropores. We treat the single level
micropores and macropores, the conductivity of the effectivd1etwork case first; then we show that the same approach can
bond iso, =[ o + (b2— 1)oy,]/b? with a probabilityp, and be generalized to the hlerarchlcal case.
o= om With a probability (13- p). Because the correlations Let the pore size .d|str|bu.t|on be given by HQ2). We
disappear in the resulting network, the EMA can be applieddenote the conductivity of micropores and macropores,as

The EMA result are lower than in the preceding case, but thé;]nd M rlegpect;]velyh I_Iet_the netwo_rk O:; macropores be at
qualitative features are reproduced w@lig. 9). A change in 1€ perhco ation t fres ol =pe. We intro UC? a parameter
the slope oDy is seen around= ¢, where the percolating P &S the (;at'r? 0l0m anfd Tm, P~ Um/"'\l/' - It p=1, (Lm,
cluster of macropores is initially formed. As the valuesrgf ~ oM and thusg=1. If p—, a percolation network is
, ) . obtained, where macropores behave (sispejconductors,

andoy, are of the same order, this effect is not pronounced; - ) " .
It becomes more important if the ratie/ol, increases. In 1 oPores a3 msm_JIators. =P, the cprrelat_mn length

. porta L ) diverges,é— . This behavior is compatible with an alge-
Fig. 10 we plot the experimental results for hardened cement i

. . . . raic dependence df on p,

pastes obtained with different water-to-cement ratios. Here
oy corresponds to the diffusion in a fully hydrated paste E=p . (14)

without capillary pores and/, to the diffusion coefficient in

:L*/,L/VF(pa,u,/VL,u,/V), (15)

the MIP results(Fig. 7). For the process with weak adsorp-

tion, the value ofD decreases with the porosity fef<< ¢,

adsorption. where the scaling functionF(x) satisfies F(0)=1,
lim,_. F(z)xz, and u,v are the critical exponents of the

capillary pores(in watep. As o,/o,,~100, the change of
S|ope of De is pronounced_ The value of the perco|ation The COﬂdUCtiVity evolves with the correlation Iength accord-
threshold of capillary porosityp.~0.3 is compatible with g to the relatior{6]
. S L\ #v
(Fig. 9. If the network of macropores becomes connected, S uvg (_)
the diffusion is accelerated if the porosity increases. As in oM &
the case of the nonhierarchical network, the effect of trap-
ping in macropores is less pronounced in the presence of
conductivity and correlation length. The value of exponent
is obtained from the evolution of for L—c, where
An important issue in transport in porous media is theS/oy~p*/(“* [36], s being the “superconductivity” ex-
correlation length¢ in the sample. Only if the size of the ponent[6]; s=u in two dimensions bus# ux in three di-

C. Correlation length
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mensions. Then from Eq15 we havea=v/(u+s). In  cesses. It is worth remarking that in the diffusion equation
three dimensionsy=0.88, ©=2.0, and s=0.73, so « (7) they are present only in the form of their ratig2¢
=0.32. =+2/+". Thus the time scale of the adsorption-desorption
As mentioned above, traditional methods cannot be diprocesses is lost, and Eq) is valid only under the hypoth-
rectly applied in the hierarchical network case because of thesis that equilibrium between the concentration of adsorbed
presence of correlations. Nevertheless, the hierarchical nefmd free particles is reached instantaneously. The influence
work with a scaling factob has the same behavior as an qf the adsorption dynamics on the temporal evolution of the
ordinary percolation network with the rescaled conductivitiestransport process should also be investigated.
3\ anday,. The correlation length at the percolation thresh-  \jjp gives an incomplete description of the pore size dis-
old of macropores then behaves &s (X;/%,) “ It is  tribution, because samples with different pore size distribu-
worth noting that the correlation length is not only a geo-tions can lead to similar MIP results. We showed that the
metrical property of a network, but also depends on the dyMIP data cannot be interpreted with simple MIP simulators,
namical process considered. For example, it will be differenbecause they depend on the connectivity of pores on differ-
for a diffusion process, where the conductivity of a pore isent scales. In spite of these shortcomings, MIP gives valu-
typically proportional to its section;; ~d7 , and for perme-  able indications about the pore size distribution in sample. It
ability, where the conductivity is given by the Poisseulle law,allows an experimental distinction between the hierarchical
a,pdf} [25]. and nonhierarchical organization of pores, and it furnishes
information about the connectivity properties of the pore
V. CONCLUSION space, which is important information for transport studies.
Comparison of our simulation results with experimental data
In this article we compared the transport properties ofshows the necessity of the introduction of correlations in the

porous media with hierarchical and with nonhierarchical or-pore size distribution for correct modeling of certain porous
ganization of pores. We developed a description of the difmedia.

fusion or adsorption processes in a pore network model. This

allows the study not only of the effective transport coeffi-

qlents, but also of the evqlutlor) of the diffusion processes in ACKNOWLEDGMENTS
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