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Pore network as a model of porous media: Comparison between nonhierarchical and
hierarchical organizations of pores

Radim Vočka* and Marc A. Dubois†

Service de Physique de l’Etat Condense´, SPEC/DRECAM, CEN Saclay, F-91191 Gif-sur-Yvette, France
~Received 16 December 1998; revised manuscript received 2 June 2000!

A pore network is used as a model of a porous medium with hierarchical and single level organization of the
pores. A microscopic diffusion or adsorption process is introduced that permits the study of both temporal
evolution and effective properties of transport. The relationships between the model parameters and the mea-
surable quantities are derived. The transport in media with a hierarchical organization of pores is shown to be
qualitatively different from that in media lacking this organization. The question of experimental distinction
between the two types of pore organization is also studied. We show that mercury intrusion porosimetry~MIP!
measurements furnish valuable information about the pore organization in a sample, but that the exact decon-
volution of the real pore size distribution from the experimental data is not straightforward. Our work provides
indications for a correct interpretation of MIP results. Qualitative comparison with experiments show the
pertinence of hierarchical models.

PACS number~s!: 81.05.Rm
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I. INTRODUCTION

A lot of effort has been devoted to the study of transp
properties of porous materials, motivated by a large num
of applications reaching from oil recovery and ground wa
contamination to diffusion in biological membranes. Alon
with the experimental work, modeling is an important to
which allows generalization of the experimental results a
also gives a better insight into the transport process its
because its important features can be independently stu
This enhances the interpretation of experimental data.

Models based on a simplified structure of porous me
are useful from this point of view. The oldest, represent
the porous media as a packing of spheres, dates from
19th century. Nevertheless, these models are difficult
handle both analytically and numerically, and they ha
gained renewed attention recently as ‘‘continuum percola
models’’ @1,2#.

An important simplification has come with the netwo
models introduced by Fatt@3#, which have become very
popular@4,5#. In these, the pores are represented as tube
a given diameter which are placed on a regular netwo
generally in a rectangular or cubic grid. This approach can
viewed as a generalization of percolation models@6#. The
drawback of the simple network models is that they repres
only single pore-level structures, since all the pores have
same length. In this case one family of pores determines
transport properties, which makes this model suitable
only the limited number of materials that fulfill this one-lev
requirement. It has been applied with success to permeab
of sandstone, for example, where the pertinent pore diam
is determined from the section of throats between the gr
@7#.

This approach is inadequate for materials with a hier
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chical structure that contain several families of pores of d
ferent length scales~macroporosity, microporosity!, such as
mortar, fractured media, or several types of rock@8#. In hi-
erarchical structures two points in a sample can be conne
by two different paths formed exclusively by micropores
by macropores, each of which has an influence on the tra
port properties. A first approach to this problem was cons
ered in@9,10#: a network model was proposed, where neig
bor sites are connected by several transport paths of diffe
conductivities, each path corresponding to a given family
pores. Pores forming different paths are not actually rep
sented. Exchange between various transport paths is pos
only at the sites of the network; therefore all the transp
paths havea priori the same length. Hence this approach
not sufficient for the case where more than two families
pores participate in the transport. In more realistic mod
pores forming different transport paths are explicitly rep
sented. A hierarchical structure is typically obtained by
troducing the correlations between the pore length and
pore diameter. They are generated by fractional Brown
motion @11,12#, or by a fractal-type construction of a mod
@13–16#. This second possibility, directly motivated by th
observation that the porous medium is scale invariant in c
tain length ranges@17#, has the advantage that as well as
numerical description an analytical approach is possib
These models are often used for modeling transport o
geological scale, so a large number of pore families is r
resented. Nevertheless, for most examples of porous ma
als on a laboratory scale, just two or three pore families
sufficient @18,19#.

Even though much work has been done on pore netw
models, a comprehensive comparison of transport in por
media with the ‘‘single level’’ and ‘‘multiscale’’ pore struc
ture is still lacking. A shortcoming of current transport stu
ies, moreover, is that adsorption is not explicitly consider
We argue that this approach does not lead to the cor
description of the temporal evolution of transport process
because diffusion and adsorption coefficients have differ
dependencies on the pore diameter. From this logic we
5216 ©2000 The American Physical Society
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PRE 62 5217PORE NETWORK AS A MODEL OF POROUS MEDIA: . . .
velop a description of microscopic diffusion process w
adsorption in a pore network model. We find the relati
with the macroscopic diffusion equation in porous med
which allows us to connect the transition rates of the mic
scopic processes with the macroscopic quantities~the diffu-
sion and adsorption coefficients!. The ‘‘Einstein relation’’ is
derived that connects temporal evolution with the effect
transport properties.

The model is described in Sec. II. We then demonstr
two applications, which show the relevance of hierarchi
networks to modeling transport in porous media. In Sec.
the model is used as a mercury intrusion porosimetry~MIP!
simulator. The MIP is widely used for measuring pore s
distribution. As the results depend strongly on the connec
ity of the pore space, their interpretation is not straightf
ward. Very sophisticated simulators have been developed
single level porous media for deconvoluting the real p
size distribution from the MIP measures@20,5#. To our
knowledge, no such work has been performed in the fra
work of a multiscale model, apart from recent rate-control
MIP simulations on correlated percolation networks, wh
showed the existence of correlated heterogeneities in s
mentary rocks@12#. We here focus on traditional pressur
controlled MIP. The image of the pore structure is quali
tively different for single scale and multiscale po
organization. A qualitative comparison of the simulation
sults with MIP experiments on cement pastes is given, wh
permits a correct interpretation of experimental data. In S
IV we compare the transport properties of single level a
multiscale models. We focus on the role played by fractu
~macropores!, which have an important influence on th
transport dynamics@21,22#. We show that their role is dif-
ferent in single level and multiscale structures. Moreover
is seen that the reversible adsorption process, althoug
slows down the dynamics of the diffusion, undermines
effect of retention in fractures. We also give the scaling o
correlation length of a fractured sample as a function of
conductivity of macropores.

II. DESCRIPTION OF THE MODEL

Imagine a regular cubic network ofL3 sites. A two-
dimensional section of such a network is represented in
1. Let a be the distance between two nearest neighbor s
~grid size!. The nearest neighbor sites are connected b
cylinder-shaped pore of diameterd, which is randomly as-
signed from a distributionf (d):

f ~d!5~12p!d~d!1ph~d!, 0<p<1, ~1!

FIG. 1. Single level network. Sites (d) and pores~horizontal
line! of non-null diameter. A pore has the form of a cylinder
lengtha and diameterd.
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whereh(d) is a strictly positive distribution andd(d) is the
Dirac distribution. Consequently, a fraction (12p) of pores
has a null diameter~they are absent!, so that a fraction (1
2p) of pairs of nearest neighbor sites is not connected. T
diameter of a pore connecting sitesi , j is denoteddi j ; its
section is denotedSi j 5p(di j )

2/4.
Let the network described above represent the first le

of a hierarchical pore structure. It is fully determined by t
parametersL,a1 ,p1 and by the distributionh1(d). A hierar-
chical network with two levels is created by the superpo
tion of this network on a similar network with the grid siz
a2, wherea2 is a multiple ofa1(a25ba1), and with a pore
size distribution f 2(d)5(12p2)d(d)1p2h2(d). This pro-
cess is illustrated in Fig. 2. By definition, pores on the fi
level that were covered during the superposition by the po
of the second level disappear. The procedure descr
above is iterated to obtain a network withH levels.

The basic length scale of the hierarchical network is
grid size of the network on the first level. This is also t
length scale on which transport processes are defined.
thus decompose each pore on the level 2 intob segmentsof
lengtha1. Now two nearest neighbor sites in the network a
connected by a segment.

To each segment connecting nearest neighbor sitesi , j
there corresponds a volume (a1)3/3 of the network. This
enables us to define theporosityf i j of the segment (i j ) as

f i j 5
3Si j a1

~a1!3
.

The porosity at sitei is defined as the average value off i j
over the incoming segments at this site,

f i5

(
$ j %

Si j a1

2~a1!3
.

We sum over the six nearest neighbor sites. The total volu
of pores in the sample comes from two contributions: fro
accessible pores~the pores forming the percolation clust
@6#! and from isolated pores. As only accessible pores in
ence transport properties of the network, isolated pores
not considered for the definition of the total porosityF0. It is
evaluated asF05(Vf i(a1)3/V0, whereV is the set of ac-
cessible sites andV0 is the total volume of the sample.

FIG. 2. Construction of the hierarchical pore network HPN w
H52 levels of hierarchy with the scaling factorb52, p15p2

50.4.~a! Single level network with the grid sizea1, ~b! single level
network with the grid sizea252a1, and ~c! the hierarchical net-
work after the superposition of~a! and ~b!.
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5218 PRE 62RADIM VOČKA AND MARC A. DUBOIS
III. MIP SIMULATIONS FOR ONE-LEVEL AND
HIERARCHICAL STRUCTURES

MIP is based on the fact that the pressure we have
apply to squeeze a nonwetting fluid in a pore is invers
proportional to the diameter of this pore. For a cylindric
pore of diameterd the pressure is given by the relation@5#

P524g cosQ/d, ~2!

where g is the surface energy of the liquid andQ is the
contact angle. The pore size distribution is obtained from
invaded volume measured as a function ofP.

The algorithm of the intrusion, similar to the one used
invasion percolation@23,24#, reflects the experimental proce
dure. The sample is immersed in mercury, so that the liq
can enter from all the faces. To each pressureP corresponds
from Eq. ~2! a diameterd, so that only the pores withd8
>d can be invaded. If a pore is invaded under a pressurP,
its neighbors with diameterd8>d are also invaded. Large
networks, up to 1403 sites, were used to minimize the finit
size effects. To interpret the results, we use the functionC,
defined by

C~d!5
1

V0F0

dV~d!

d ln d
,

where V(d) is the cumulative volume of accessible por
having diameterd8.d. Then eC(d) gives the fraction of
porosity due to the pores with diameter in the interv
@d;(11e)d#. The functionC(d) reflects the real pore siz
distribution in the sample. Similarly, we define an ‘‘expe
mental’’ functionC i(d) as a derivative of the volumeVi(d)
invaded under the pressureP(d). The interpretation of
C i(d) is not straightforward, because a fraction of pores
diameterd8.d is shaded by pores of diameterd9,d, so that
Vi(d)<V(d).

The aim of this section is twofold. First, we compare t
MIP results in single level and multiscale networks. Seco
we study the influence of the connectivity on the MIP resu
in single level and multiscale networks to find the relati
betweenC i(d) and C(d) that would allow a correct inter
pretation of the experimental data.

As we noted above, only two or three families of por
are sufficient for a correct description of a porous sample
the laboratory scale. That is why we consider a bivari
distribution of pore diameters, distributed once over a sin
level network and once over a hierarchical network. In
first case, the distribution is given byf (d)5(12p)g(d)
1pg8(d) with p50.11; in the second case it readsf 1(d)
5g(d), f 2(d)5g8(d) on the network withb53. The value
of p is chosen in such a way thatC(d) is the same in both
cases. As the length scale is not specified, the choice o
ameters is arbitrary. For simplicity,g(d) andg8(d) are taken
to be Gaussian distributions truncated ford<0, centered re-
spectively aroundm51 andm53. The results obtained fo
networks of size 603 sites are presented in Fig. 3. In spite
the fact that a bivariate distribution is simulated, only o
peak is present in the nonhierarchical case: macropore
not form a sample-spanning cluster, and they can be acce
only through the microporosity. This situation can be direc
related to the experimental results on sandstones, whe
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bivariate distribution of pores is observed@18# ~pores are
separated by narrow necks!, and only one peak is present i
the MIP data@25#. In the case of intrusion in a hierarchica
network two peaks are visible, because both pore fami
independently form a percolating cluster. The same effec
observed in the example of hardened cement paste~Fig. 7
below! where three pore families are present~capillary,
micro-, and nanoporosity@19#!. The network of capillary
pores forms a percolating cluster even if the volumes oc
pied by capillary pores and micropores are compara
which is a sign of a hierarchical structure.

We can now focus on the influence of connectivity
MIP results. We first examine the case of a simple netw
where the pore diameters follow the distribution~1!, and
h(d) again is a Gaussian distribution with meanm and vari-
ances, truncated ford<0. The main part of the porosity is
due to pores of diameterdM5A^d2&. If m@s2, dM

5Am21s2. The distributionC i(d) obtained for several val-
ues ofp ~Fig. 4! shows that there exists a critical diamet
dc(p) that depends onp. For pressures corresponding tod
.dc(p), the invaded volume of pore space is very sma
even when the porosity created by pores with diameter
this range is not negligible. In fact, ford.dc , invaded pores
do not form a sample-spanning cluster. The observed
vaded volume is thus only a finite size effect, as it cor
sponds to pores directly connected to the faces of the
work. With increasing network size the surface-to-volum
fraction goes to zero, so the fraction of invaded poros
vanishes. The value ofdc is related to the percolation thresh
old pc @6# of the network through@25#

E
dc

`

g~x!dx5
pc

p
. ~3!

For the cubic bond percolation networkpc'0.249 @26#. If
d,dc , a sample-spanning cluster of invaded pores

FIG. 3. Comparison of the results of simulations of mercu
intrusion porosimetry for the case of pore distribution on nonhi
archical (s) and hierarchical (n, two levels, b53) networks.
C(d) is plotted as a solid line. The diameters of the two classe
pore are given by Gaussian distributions withm151.0, s150.2 and
m253.0, s250.4, respectively. Length scale in arbitrary units.
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PRE 62 5219PORE NETWORK AS A MODEL OF POROUS MEDIA: . . .
formed, so there is a high probability that the empty po
are directly connected to the invaded ones. Our numer
results indicate that~out of a very narrow critical region
arounddc) F i(d) converges exponentially towardF(d) ~in-
set of Fig. 4!. This convergence is related to the statistics
the finite clusters of pores having diameterd8>d. Hence we
obtainC i(d) approximately in the form

C i~d!5H d3g~d!/^d2& for d,dc

S E
dc

`

x3g~x!dx/^d2& D d~d2dc! for d>d.

~4!

Equation~4! very well approximates the simulation resu
for p far enough frompc . As shown by previous analysis
for d.dc we loseall the information about the distribution
It is also important to note that the value ofdc corresponding
approximately to the peak ofC i(d), is not equal todM @the
peak ofC(d)#. If the network of pores approaches the pe
colation threshold,dc is significantly lowerthandM .

The results of intrusion in a hierarchical network are p
sented in Figs. 5 and 6. A network with three levels is us
First, three levels are of sufficient generality for observat
of the effects of the hierarchical structure on MIP resu
Secondly, use of three levels allows a direct comparison
the simulation results with the experimental data for ha
ened cement pastes, where three families of pores are
countered@19#. Simulations were done on a network of 123

sites with the scaling factorb52. The pore size distribution
on each level follows Eq.~1!. Let g(d) again be a truncated
Gaussian distribution, with, respectivelym151, s150.2,
m252, s250.4, andm354, s350.2. The parameters wer
chosen to obtain three distinct families of pores, which w
be called nanoporosity, microporosity, and macroporos

FIG. 4. Results of the simulations of mercury porosimetry int
sion on a network with a Gaussian distribution of pore diame
(m51, s50.2). Results forp51 (s), p50.5 (h), and p50.3
(n). Prediction~4! plotted for the threep values with dot-dashed
long-dashed, and dotted bold lines, respectively.C(d) plotted with
solid bold line. Inset: Exponential convergence ofF i(d) toward
F(d) for d,dc . p51 case, linear-log plot. Network of size 403

sites was used. Length scale in arbitrary units.
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The peaks corresponding to these pore families are deno
respectively, I, II, and III. The connectivity is fixed by th
triplet (p1 ,p2 ,p3).

The comportment of the macroporosity peak can be
rectly deduced from the preceding results obtained fo
nonhierarchical network. If the connectivity of the netwo
of macropores decreases, the position of this peak shifts
ward smaller diameters~Fig. 5!. The behavior of the othe
peaks depends on the global connectivity of the network
the case of a well connected network, the position of
peaks I and II does not depend on the connectivity
macropores. The maximum of each of these peaks alw
indicates the characteristic diameter of the correspond
family of pores@cases~1;1;1! and~1;1;0.5! in Fig. 5#. Peak II
shifts only once the macropore network no longer forms
percolating cluster. Its position is then determined by

-
s

FIG. 5. Variation ofC i(d) with the connectivity of the network.
Three-level network withb52. Pore diameters of the three po
classes are given by a truncated Gaussian distribution, with, res
tively, m151.0, s150.2, m252.0, s250.4, and m354.0, s3

50.8. Length scale in arbitrary units.

FIG. 6. Variation ofC i(d) with the connectivity of the network.
For the details, see Fig. 5.
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5220 PRE 62RADIM VOČKA AND MARC A. DUBOIS
relation~3!, where the value ofpc corresponds to the perco
lation threshold of the network formed by both micropor
and macropores. In the case where only the connectivit
the micropores decreases@case~1;0.5;1!#, the peak II does
not shift toward smaller diameters, because the network
micropores is always well connected via the network
macropores. This is true also for the nanopores.

In the case of a weakly connected network, the influe
of the different families of pores is no longer uncorrelat
~Fig. 6!. If the connectivity decreases homogeneou
@(1;1;1)→(0.4;0.4;0.4)#, the positions of all the peak
change. The shift of peak III is the most important, but pe
I and II are also shifted toward smaller diameters, beca
the weakly connected network of macropores cannot c
pensate the weak connectivity of micropores and nanopo
Moreover, in this case the connectivity of macropores infl
ences the position of the microporosity peak. If the conn
tivity of the network of macropores increases, peak II
shifted toward the higher diameters@case~0.4;0.4;1!#; if it
decreases, this peak moves toward the lower diameters@case
~0.4;0.4;0.1!#.

The results presented were obtained for networks witb
52. The situation is different ifb@2. Because of computa
tion limits this case is not accessible for the simulatio
nevertheless, the behavior can be deduced from the pre
ing results. In this case pores on leveli occupy large regions
that are not intersected by the pores on levelj . i . Hence the
percolationlike effects affect all the pore classes, and
position of a peak in MIP results depends only on the c
nectivity of the corresponding pore class.

In conclusion, for well connected networks only the righ
most peak in the MIP results is strongly affected by per
lationlike effects. The positions of the other peaks indic
correct diameters of the corresponding pore classes. M
over, Eq.~3! shows that the porosity indicated by the righ
most peak may be partially due to the unconnected po
having diameterd.dc . The effects described are observab
in experimental results. In Fig. 7 we show the results
tained on CEM-I pastes for different water-to-cement rat

FIG. 7. Results of MIP experiments in hardened cement p
for different w/c ratios: w/c50.5 (m), w/c50.4 (h), w/c50.3
(d).
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(w/c). Variation of w/c mainly affects the position of the
rightmost peak; the position of the central peak is practica
unchanged. From analysis of the porosity indicated by
rightmost peak, it is readily seen that its displacement is
not only to a decreased average diameter of pores, as c
be concluded, but also to a decreased connectivity@27#.

IV. TRANSPORT IN NONHIERARCHICAL VERSUS
HIERARCHICAL POROUS MEDIA

A. Diffusion-adsorption process

The diffusion process in the network is defined by t
microscopic motion of particles. A particle can be found
site i of the network with a probabilityPi . It can be either
diffusing ~probability Pi

f) or adsorbed~probability Pi
a). We

have Pi5Pi
f1Pi

a . A diffusing particle at sitei can either
jump to the nearest neighbor sitej with the probabilityWi j or
be adsorbed with the probabilityg i

a . An adsorbed particle is
released with probabilityg i

r . The diffusion process is de
scribed by means of a pair of balance equations~master
equations!:

]Pi
f

]t
5(

$ j %
~Wji Pj

f2Wi j Pi
f !1Pi

ag i
r2Pi

fg i
a , ~5!

]Pi
a

]t
5g i

aPi
f2g i

r Pi
a .

In three dimensions the macroscopic diffusion coefficienD
is defined through the relation@28#

^R2~ t !&56Dt, ~6!

whereR(t) is the distance of the particle from origin at tim
t, and ^•••& means the average computed over all poss
random walks on a given network. The overbar, represe
the average calculated over all possible realizations of
network.

The transition ratesWi j , g i
r , andg i

a are found by com-
parison of Eq.~5! with the diffusion equation in porous me
dia @29#,

f~x!~11Kad!] tc
f~x,t !5“•@f~x!D~x!“cf~x,t !#. ~7!

HereDe is the effective diffusion coefficient,cf is the con-
centration of diffusing particles in the pore, andKad is the
adsorption/desorption coefficient, expressed in the form

Kad~x!5
a~x!

f~x!
keq , ~8!

wherea(x) is the specific surface of the pore andkeq is the
ratio of the concentrations of adsorbed and diffusing p
ticles at equilibrium. The probabilityPi

f is expressed by
means of the concentration,ci

f5Pi
f /@f i(a1)d#, and the

adsorption/desorption coefficientKad is introduced, Ki
ad

5g i
a/g i

r . If the variations of ]Pi
t/]t are slow enough

(]2Pi j
t /]t2.0), Eq. ~5! simplifies to

te
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f i~11Ki
ad!

]ci
f

]t
5(

$ j %
~f jWji cj

f2f iWi j ci
f !

5(
$ j

f iWi j ~cj
f2ci

f !. ~9!

The equalityf jWji 5f iWi j results from the fact that the
concentration has to be constant in the stationary state. C
parison of Eqs.~9! and ~7! yields

~a1!2f iWi j 5D~x!f~x!, Ki
ad5Kad~x!. ~10!

The diffusion coefficient in the network can be measu
directly using Eq.~6!, or indirectly, by calculating the con
ductivity S of the equivalent electrical network and using
‘‘Einstein relation’’ for the evaluation ofD @4,30,31#. The
equivalent electrical network is built by replacing the por
with resistances having the conductivitys i j 5a1f iWi j . Us-
ing a simple generalization of Derridaet al., demonstration
of the equivalence between the diffusion and conductiv
problems@32#, it can be shown thatD andS are then related
throughS5^f i(11Ki

ad)&D, where^•••& is the average cal
culated over the network. In the same manner, the rela
between D and the effective diffusion coefficientDe is
found. This last coefficient, usually experimentally acc
sible, measures the fluxQ through the sample in steady stat
It is defined through Fick’s lawQ52De“c. The relation
betweenD andDe reads

De5^f~11Kad!&D. ~11!

The relations betweenD, De , and S are of both practical
and theoretical importance. First, it is relatively easy
evaluate the the electrical conductivity of a network, sin
special algorithms for this purpose have been develo
@33,34#. Second, it is simpler to discuss the transport prop
ties of a pore network by means of the ‘‘conductivity’’ o
poress i j than by means of the diffusive flux through a por
which, as seen from Eq.~10!, is a function of two indepen-
dent parametersD(x) andf(x).

B. D and De in hierarchical and nonhierarchical networks

We can compare the diffusion coefficientsD and De in
hierarchical and nonhierarchical networks with two famili
of pores,~micropores and macropores!. In such a network
the porosity can be varied in several ways. We chose to
the microporosity, and to vary the porosity by addi
macropores. This corresponds to measuring the diffusion
efficient in several samples of a medium that are fracture
different extents, or in samples of hardened cement pa
with different water-to-cement ratiosw/c. The pore diam-
eters in the network are then given by the distribution

f ~d!5~12p8!d~d2d1!1p8d~d2d2!, p8P@0;1/9#,
~12!

for the nonhierarchical network, and by
m-
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f 1~d!5d~d2d1!,

f 2~d!5~12p!d~d!1pd~d2d2!,

pP@0;1#, ~13!

for the hierarchical network. The porosity is tuned by t
parametersp and p8. If p85p/9, the pore size distributions
are identical in the two networks. The porosityf then varies
in the interval@fmin ;fmax#, wherefmin53p(d1/2a1)2 and
fmax53p(8d1

21d2
2)/36a1

2 (a1 is the grid size of the net-
work!. The specific surface varies in the interv
@amin ;amax#, where amin53pd1 /a1

2 and amax5p(8d1

1d2)/3a1
2.

Since the length scale is not specified, this choice of
diametersd1 , d2 is arbitrary. We choosed151, d253. The
valueb53 is used, so the aspect ratio of pores is constan
the hierarchical network. The conductivitys of a pore
should be proportional to its section,s5d2. This corre-
sponds to the assumption that the diffusion coefficient i
pore does not depend on its diameter. Networks of sizes
to 603 sites were used for the calculations. In all the cases
checked that the size of the network was larger than
correlation length, so finite size effects are not important

The simulation results for the nonhierarchical netwo
together with the effective medium approximation~EMA!
results@35#, are shown in Fig. 8. The value of the effectiv
diffusion coefficientDe increases with the porosity. In con
trast, the value of the diffusion coefficientD decreases: the
presence of macropores slows down the diffusion, beca
they act as reservoirs of particles. It takes a relatively lo
time for the concentration to equilibrate between t
macropore and its surroundings. It is noteworthy that t
effect is important only in the regime of weak adsorption.
Kad;keq /d, the adsorption is stronger in pores with smal
diameter. If keq grows, the effect of ‘‘trapping’’ in
macropores is then partially compensated by the adsorp
in micropores.

FIG. 8. Diffusion coefficient of a nonhierarchical network.De

(s); D with keq50 (n), keq50.125 (h), and keq50.5 (L).
Length scale in arbitrary units. Lines represent the EMA results
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Because of the correlations in the pore size distributi
we cannot directly apply the EMA on the hierarchical n
work. Nevertheless, it is possible to use the ‘‘decimatio
method described in@15#, where a cell of sizeba1 is re-
placed by an effective bond with a rescaled conductivity
we denote bysm andsM , respectively, the conductivity o
micropores and macropores, the conductivity of the effec
bond issM8 5@sM1(b221)sm#/b2 with a probabilityp, and
sm8 5sm with a probability (12p). Because the correlation
disappear in the resulting network, the EMA can be appli
The EMA result are lower than in the preceding case, but
qualitative features are reproduced well~Fig. 9!. A change in
the slope ofDe is seen aroundf5fc , where the percolating
cluster of macropores is initially formed. As the values ofsm8
andsM8 are of the same order, this effect is not pronounc
It becomes more important if the ratiosm8 /sM8 increases. In
Fig. 10 we plot the experimental results for hardened cem
pastes obtained with different water-to-cement ratios. H
sM8 corresponds to the diffusion in a fully hydrated pas
without capillary pores andsm8 to the diffusion coefficient in
capillary pores~in water!. As sM8 /sm8 ;100, the change o
slope of De is pronounced. The value of the percolatio
threshold of capillary porosityfc'0.3 is compatible with
the MIP results~Fig. 7!. For the process with weak adsor
tion, the value ofD decreases with the porosity forf,fc
~Fig. 9!. If the network of macropores becomes connect
the diffusion is accelerated if the porosity increases. As
the case of the nonhierarchical network, the effect of tr
ping in macropores is less pronounced in the presenc
adsorption.

C. Correlation length

An important issue in transport in porous media is t
correlation lengthj in the sample. Only if the size of th

FIG. 9. Diffusion coefficient of a hierarchical network.De (s);
D(fmax1keqamax) with keq50 (n), keq50.125 (h), and keq

50.5 (L). De of the nonhierarchical network plotted for compa
son (d). pc indicates the percolation threshold of the network
macropores. Length scale in arbitrary units. Lines represent
EMA results.
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sampleL.j are the measured transport coefficients sc
independent so that their values can be extrapolated.
network with a bivariate distribution of pore sizes, there a
two points wherej becomes important. The first point is th
percolation threshold of the network. The behavior ofj in its
vicinity is well understood from percolation theory@6#. The
second point of interest is the percolation threshold of
macroporosity. Here the network of macropores becom
fractal, and its correlation length diverges. Nevertheless,
presence of micropores assures the finiteness ofj of the
complete network, and the evolution ofj varies as a function
of the conductivity of macropores. We treat the single le
network case first; then we show that the same approach
be generalized to the hierarchical case.

Let the pore size distribution be given by Eq.~12!. We
denote the conductivity of micropores and macropores assm
andsM , respectively. Let the network of macropores be
the percolation threshold,p5pc . We introduce a paramete
r as the ratio ofsm and sM , r5sm /sM . If r51, sm
5sM , and thusj51. If r→`, a percolation network is
obtained, where macropores behave as~super!conductors,
micropores as insulators. Asp5pc , the correlation length
diverges,j→`. This behavior is compatible with an alge
braic dependence ofj on r,

j5r2a. ~14!

The conductivity evolves with the correlation length acco
ing to the relation@6#

S

sM
5L2m/nFF S L

j D m/nG5L2m/nF~ram/nLm/n!, ~15!

where the scaling functionF(x) satisfies F(0)51,
limz→` F(z)}z, and m,n are the critical exponents of th
conductivity and correlation length. The value of exponena
is obtained from the evolution ofS for L→`, where
S/sM;rm/(m1s) @36#, s being the ‘‘superconductivity’’ ex-
ponent@6#; s5m in two dimensions butsÞm in three di-

FIG. 10. Effective diffusion coefficient measured for CEM
hardened cement pastes.
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mensions. Then from Eq.~15! we havea5n/(m1s). In
three dimensionsn50.88, m52.0, and s50.73, so a
50.32.

As mentioned above, traditional methods cannot be
rectly applied in the hierarchical network case because of
presence of correlations. Nevertheless, the hierarchical
work with a scaling factorb has the same behavior as a
ordinary percolation network with the rescaled conductivit
SM8 andsm8 . The correlation length at the percolation thres
old of macropores then behaves asj;(Sm8 /SM8 )2a. It is
worth noting that the correlation length is not only a ge
metrical property of a network, but also depends on the
namical process considered. For example, it will be differ
for a diffusion process, where the conductivity of a pore
typically proportional to its section,s i j ;di j

2 , and for perme-
ability, where the conductivity is given by the Poisseulle la
s i j ;di j

4 @25#.

V. CONCLUSION

In this article we compared the transport properties
porous media with hierarchical and with nonhierarchical
ganization of pores. We developed a description of the
fusion or adsorption processes in a pore network model. T
allows the study not only of the effective transport coe
cients, but also of the evolution of the diffusion processes
time. We found a relationship between the microsco
transport process and the macroscopic diffusion equat
which links the transition rates to the macroscopic coe
cients. The probabilities of adsorption and desorptionga and
g r determine the time scale of the adsorption-desorption p
ys
i-
e

et-

s
-

-
-
t

s

,

f
-
f-
is

n
c
n,
-

o-

cesses. It is worth remarking that in the diffusion equat
~7! they are present only in the form of their ratio,Kad

5ga/g r . Thus the time scale of the adsorption-desorpt
processes is lost, and Eq.~7! is valid only under the hypoth-
esis that equilibrium between the concentration of adsor
and free particles is reached instantaneously. The influe
of the adsorption dynamics on the temporal evolution of
transport process should also be investigated.

MIP gives an incomplete description of the pore size d
tribution, because samples with different pore size distri
tions can lead to similar MIP results. We showed that
MIP data cannot be interpreted with simple MIP simulato
because they depend on the connectivity of pores on dif
ent scales. In spite of these shortcomings, MIP gives va
able indications about the pore size distribution in sample
allows an experimental distinction between the hierarch
and nonhierarchical organization of pores, and it furnish
information about the connectivity properties of the po
space, which is important information for transport studi
Comparison of our simulation results with experimental d
shows the necessity of the introduction of correlations in
pore size distribution for correct modeling of certain poro
media.
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